palantiri.ClassificationPlotHandlers module
class palantiri.ClassificationPlotHandlers.ClassifierPlotHandler(dataset, trained_classifier, **params)
Bases: palantiri.BasePlotHandlers.PlotHandler
Handles all the plots related of the chosen classifier.
build_confusion_matrix(normalize=False)
Building the confusion matrix
:param normalize: if True confusion matrix is normalized.
build_confusion_matrix_figure(figure_layout)
Builds the confusion matrix figure in confusion_matrix_figure.
:param figure_layout: figure layout - plot.ly layout object.
build_prediction_figure(figure_layout)
Building the classifier prediction figure.
:param figure_layout: figure layout - plot.ly Layout object.
build_roc_figure(figure_layout=Layout())
Building the ROC curve figure of the classifier.
:param figure_layout: figure layout - plot.ly layout object.
confusion_matrix()
The confusion matrix.
:return: The confusion matrix as a numpy array.
dataset()
The dataset
:return: The dataset as a dictionary
classmethod from_pandas_dataframe(dataframe, trained_classifier, **params)
Constructing the handler from a pandas dataframe.
:param dataframe: the dataframe form which the handler is constructed. The ‘target’ column should be included in the dataframe.
:param trained_classifier: sklearn classifier (trained / fitted).
:param params: other params.
:return: returns the classifier plot handler object.
n_classes()
The number of classes.
:return: An int representing the number of classes.
plot_confusion_matrix(figure_layout=None)
Plotting the confusion matrix figure with plot.ly’s iplot function.
:param figure_layout: figure layout - plot.ly layout object.
plot_prediction(figure_layout=None)
Plotting the prediction figure with plot.ly’s iplot function.
:param figure_layout: figure layout - plot.ly Layout object.
plot_roc(figure_layout=None)
Plotting the ROC curve figure with plot.ly’s iplot function.
:param figure_layout: figure layout - plot.ly Layout object.
predicted_target_score()
The predicted score - available if classifier has the predict_proba functionality.
:return: The predicted score.
save_confusion_matrix_figure(file_name)
Saving the confusion matrix figure as an html file.
:param file_name: the html file name.
save_prediction_figure(file_name)
Saving the prediction figure as an html file.
:param file_name: the html file name.
save_roc_figure(file_name)
Saving the ROC curve figure as an html file.
:param file_name: the html file name.
trained_classifier()
The trained classifier .
:return: The classifier in the sklearn format.
class palantiri.ClassificationPlotHandlers.ThreeDimensionalClassifierPlotHandler(dataset, trained_classifier, **params)
Bases: palantiri.ClassificationPlotHandlers.ClassifierPlotHandler
Handles all the plots related of the chosen classifier on 3D.
build_prediction_figure(figure_layout=Layout())
Plotting the classifier prediction and saving the figure.
:param figure_layout: figure layout - plot.ly Layout object.
class palantiri.ClassificationPlotHandlers.TwoDimensionalClassifierPlotHandler(dataset, trained_classifier, **params)
Bases: palantiri.ClassificationPlotHandlers.ClassifierPlotHandler
Handles all the plots related of the chosen classifier on 2D.
build_prediction_figure(figure_layout=Layout(), step_size=0.01)
Building the classifier prediction figure.
:param figure_layout: figure layout - plot.ly Layout object.
:param step_size: Plot resolution.